Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/28909
Title: Understanding the genetic basis of atrial fibrillation : next steps after genome-wide association studies
Authors: Mahida, Saagar Narendrasinh
Supervisors: Samani, Nilesh
Award date: 1-Jun-2014
Presented at: University of Leicester
Abstract: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in clinical practice. Over the past two decades, we have come to appreciate that AF has a significant heritable component. The recent advent of next-generation sequencing technology has spawned a new era of research into the genetic basis of AF. Genome-wide association studies (GWAS) have identified multiple common variants underlying AF. Further, exome sequencing has emerged as a potentially powerful technique for the identification of mutations underlying familial forms of AF. In this thesis, we sought to further elucidate the genetic basis of AF though two specific aims. Firstly, we investigated the mechanistic link between KCNN3, a potassium channel gene which was identified in a GWAS for lone AF, and arrhythmia pathogenesis. Secondly, we performed exome sequencing and classical linkage analysis in two AF pedigrees to identify novel mutations for the arrhythmia. We demonstrate that overexpression of Kcnn3 in a murine model results in an increased susceptibility to AF. Interestingly, these mice also display a high incidence of sudden death due to heart block. Exome sequencing in an AF pedigree identified a potentially causative mutation in the transcription factor gene GATA6. In a second AF pedigree, we identified a novel locus for the arrhythmia on chromosome 1. However the causative mutation at this locus remains elusive. Ultimately, the identification of the genetic substrate underlying AF is likely to uncover novel therapeutic targets as well as enhancing risk stratification for this common and morbid arrhythmia.
Links: http://hdl.handle.net/2381/28909
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Theses, Dept. of Cardiovascular Sciences
Leicester Theses

Files in This Item:
File Description SizeFormat 
2014MahidaSNPhD.pdf2.89 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.