Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/31902
Title: ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes
Authors: McCrea, I. W.
Lockwood, M.
Moen, J.
Pitout, F.
Eglitis, P.
Aylward, A. D.
Cerisier, J. C.
Thorolfssen, A.
Milan, S. E.
First Published: 1-Sep-2000
Presented at: 9th International EISCAT Workshop, WERNIGERODE, GERMANY
Start Date: 6-Sep-1999
End Date: 10-Sep-1999
Publisher: European Geosciences Union (EGU), Copernicus Publications, Springer Verlag (Germany)
Citation: ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 2000, 18 (9), pp. 1009-1026 (18)
Abstract: We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromsø and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.
DOI Link: 10.1007/s00585-000-1009-7
ISSN: 0992-7689
eISSN: 1432-0576
Links: http://www.ann-geophys.net/18/1009/2000/angeo-18-1009-2000.html
http://hdl.handle.net/2381/31902
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Archived with reference to SHERPA/RoMEO and publisher website. © European Geosciences Union 2000. Version of record: http://www.ann-geophys.net/18/1009/2000/angeo-18-1009-2000.html
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
angeo-18-1009-2000.pdfPublished (publisher PDF)1.17 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.