Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/32041
Title: Adaptive discontinuous Galerkin methods for nonlinear parabolic problems
Authors: Metcalfe, Stephen Arthur
Supervisors: Georgoulis, Emmanuil
Cangiani, Andrea
Award date: 1-Apr-2015
Presented at: University of Leicester
Abstract: This work is devoted to the study of a posteriori error estimation and adaptivity in parabolic problems with a particular focus on spatial discontinuous Galerkin (dG) discretisations. We begin by deriving an a posteriori error estimator for a linear non-stationary convection-diffusion problem that is discretised with a backward Euler dG method. An adaptive algorithm is then proposed to utilise the error estimator. The effectiveness of both the error estimator and the proposed algorithm is shown through a series of numerical experiments. Moving on to nonlinear problems, we investigate the numerical approximation of blow-up. To begin this study, we first look at the numerical approximation of blow-up in nonlinear ODEs through standard time stepping schemes. We then derive an a posteriori error estimator for an implicit-explicit (IMEX) dG discretisation of a semilinear parabolic PDE with quadratic nonlinearity. An adaptive algorithm is proposed that uses the error estimator to approach the blow-up time. The adaptive algorithm is then applied in a series of test cases to gauge the effectiveness of the error estimator. Finally, we consider the adaptive numerical approximation of a nonlinear interface problem that is used to model the mass transfer of solutes through semi-permiable membranes. An a posteriori error estimator is proposed for the IMEX dG discretisation of the model and its effectiveness tested through a series of numerical experiments.
Links: http://hdl.handle.net/2381/32041
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Leicester Theses
Theses, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
2015metcalfesaphd.pdf2.13 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.