Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/32158
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSnashall, Nicole-
dc.contributor.authorTaillefer, Rachel-
dc.date.accessioned2015-05-07T10:12:47Z-
dc.date.available2015-08-19T01:45:09Z-
dc.date.issued2015-02-13-
dc.identifier.citationProceedings of the Edinburgh Mathematical Society, 2015en
dc.identifier.issn0013-0915-
dc.identifier.urihttp://hdl.handle.net/2381/32158-
dc.identifier.urihttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9933159&fileId=S0013091514000315-
dc.descriptionTo appear in the Proceedings of the Edinburgh Mathematical Society. Will appear in 2015 - page proofs have been returned to journal. No date/volume/pages are available yet.en
dc.description.abstractWe consider a natural generalisation of symmetric Nakayama algebras, namely, symmetric special biserial algebras with at most one non-uniserial indecomposable projective module. We describe the basic algebras explicitly by quiver and relations, then classify them up to derived equivalence and up to stable equivalence of Morita type. This includes the algebras of [Bocian-Holm-Skowro\'nski, J. Pure Appl. Algebra 2004], where they study the weakly symmetric algebras of Euclidean type, as well as some algebras of dihedral type.en
dc.language.isoenen
dc.publisherCambridge University Press (CUP) for Edinburgh Mathematical Societyen
dc.relation.urihttp://arxiv.org/abs/1205.5119v3-
dc.rightsCopyright © Edinburgh Mathematical Society 2015. Archived with reference to SHERPA/RoMEO and publisher website.en
dc.titleClassification of symmetric special biserial algebras with at most one non-uniserial indecomposable projectiveen
dc.typeJournal Articleen
dc.identifier.doi10.1017/S0013091514000315-
dc.identifier.eissn1464-3839-
dc.description.statusPeer-revieweden
dc.description.versionPost-printen
dc.type.subtypeArticle-
pubs.organisational-group/Organisationen
pubs.organisational-group/Organisation/COLLEGE OF SCIENCE AND ENGINEERINGen
pubs.organisational-group/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematicsen
Appears in Collections:Published Articles, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
Snashall_Taillefer_Sep2013_final_ProcEMS.pdfPost-review (final submitted)288.03 kBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.