Please use this identifier to cite or link to this item:
Title: Land Degradation Assessment using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982-2012
Authors: Ibrahim, Yahaya Z.
Balzter, Heiko
Kaduk, Jorg
Tucker, Compton J.
First Published: 30-Apr-2015
Publisher: MDPI
Citation: Remote Sensing, 2015, 7, pp. 5471-5494
Abstract: Areas affected by land degradation in Sub-Saharan West Africa between 1982 and 2012 are identified using time-series analysis of vegetation index data derived from satellites. The residual trend (RESTREND) of a Normalized Difference Vegetation Index (NDVI) time-series is defined as the fraction of the difference between the observed NDVI and the NDVI predicted from climate data. It has been widely used to study desertification and other forms of land degradation in drylands. The method works on the assumption that a negative trend of vegetation photosynthetic capacity is an indication of land degradation if it is independent from climate variability. In the past, many scientists depended on rainfall data as the major climatic factor controlling vegetation productivity in drylands when applying the RESTREND method. However, the water that is directly available to vegetation is stored as soil moisture, which is a function of cumulative rainfall, surface runoff, infiltration and evapotranspiration. In this study, the new NDVI third generation (NDVI3g), which was generated by the National Aeronautics and Space Administration-Goddard Space Flight Center Global Inventory Modeling and Mapping Studies (NASA-GSFC GIMMS) group, was used as a satellite-derived proxy of vegetation productivity, together with the soil moisture index product from the Climate Prediction Center (CPC) and rainfall data from the Climate Research Unit (CRU). The results show that the soil moisture/NDVI pixel-wise residual trend indicates land degraded areas more clearly than rainfall/NDVI. The spatial and temporal trends of the RESTREND in the region follow the patterns of drought episodes, reaffirming the difficulties in separating the impacts of drought and land degradation on vegetation photosynthetic capacity. Therefore, future studies of land degradation and desertification in drylands should go beyond using rainfall as a sole predictor of vegetation condition, and include soil moisture index datasets in the analysis.
DOI Link: 10.3390/rs70505471
ISSN: 2072-4292
eISSN: 2072-4292
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2015. This is an open-access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Geography

Files in This Item:
File Description SizeFormat 
Ibrahim_2015_RemSens_Land_Degradation_West_Africa_RESTREND.pdfPublished (publisher PDF)4.51 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.