Please use this identifier to cite or link to this item:
Title: Allosteric Modulation of the Activity of the Glucagon-like Peptide-1 (GLP-1) Metabolite GLP-1 9–36 Amide at the GLP-1 Receptor
Authors: Li, N.
Lu, J.
Willars, G. B.
First Published: 19-Oct-2012
Publisher: Public Library of Science
Citation: PLoS One, 2012, 7 (10), pp. e47936
Abstract: Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+) signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.
DOI Link: 10.1371/journal.pone.0047936
eISSN: 1932-6203
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Description: PMCID: PMC3477139
Appears in Collections:Published Articles, Dept. of Cell Physiology and Pharmacology

Files in This Item:
File Description SizeFormat 
journal.pone.0047936.pdfPublished (publisher PDF)612.84 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.