Please use this identifier to cite or link to this item:
Title: High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary
Authors: Evans, Mark
Benson, R. B. J.
Druckenmiller, P. S.
First Published: 16-Mar-2012
Publisher: Public Library of Science
Citation: PLoS ONE, 2012, 7(3) : e31838
Abstract: Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.
DOI Link: 10.1371/journal.pone.0031838
ISSN: 1932-6203
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2012 Benson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Geology

Files in This Item:
File Description SizeFormat 
journal.pone.0031838.pdfPublished (publisher PDF)883.08 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.