Please use this identifier to cite or link to this item:
Title: Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles
Authors: Davies, David L.
Ellul, Charles E.
Macgregor, S. A.
McMullin, C. L.
Singh, Kuldip
First Published: 26-Jun-2015
Publisher: American Chemical Society
Citation: Journal of the American Chemical Society, 2015
Abstract: A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N[superscript: +] > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).
DOI Link: 10.1021/jacs.5b04858
ISSN: 0002-7863
eISSN: 1520-5126
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2015 American Chemical Society. ACS AuthorChoice - This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. ( )
Appears in Collections:Published Articles, Dept. of Chemistry

Files in This Item:
File Description SizeFormat 
jacs%2E5b04858.pdfPublished (publisher PDF)1.83 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.