Please use this identifier to cite or link to this item:
Title: An inefficient dwarf: chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy
Authors: Ural, U.
Cescutti, G.
Koch, A.
Kleyna, J.
Feltzing, S.
Wilkinson, Mark I.
First Published: 19-Mar-2015
Publisher: Oxford University Press on behalf of the Royal Astronomical Society
Citation: Monthly Notices of the Royal Astronomical Society, 2015, 449 (1), pp. 761-770 (10)
Abstract: We present detailed chemical element abundance ratios of 17 elements with eight ≤ Z ≤ 60 in three metal-poor stars in the Ursa Minor dwarf spheroidal galaxy, which we combine with extant data from the literature to assess the predictions of a novel suite of galaxy chemical evolution models. The spectroscopic data were obtained with the Keck/High-Resolution Echelle Spectrograph instrument and revealed low metallicities of [Fe/H] = −2.12, −2.13 and −2.67 dex. While the most metal-poor star in our sample shows an overabundance of [Mn/Fe] and other Fe-peak elements, our overall findings are in agreement with previous studies of this galaxy: elevated values of the [α/Fe] ratios that are similar to, or only slightly lower than, the halo values but with SN Ia enrichment at very low metallicity, as well as an enhancement of the ratio of first to second peak neutron capture elements [Y/Ba] with decreasing metallicity. The chemical evolution models which were tailored to reproduce the metallicity distribution function of the dwarf spheroidal, indicate that Ursa Minor had an extended star formation which lasted nearly 5 Gyr with low efficiency and are able to explain the [Y/Ba] enhancement at low metallicity for the first time. In particular, we show that the present-day lack of gas is probably due to continuous loss of gas from the system, which we model as winds.
DOI Link: 10.1093/mnras/stv294
ISSN: 0035-8711
eISSN: 1365-2966
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
MNRAS-2015-Ural-761-70.pdfPublished (publisher PDF)1.8 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.