Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/34044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCapper, Glen.en
dc.date.accessioned2015-11-19T08:48:53Z-
dc.date.available2015-11-19T08:48:53Z-
dc.date.issued1995en
dc.identifier.urihttp://hdl.handle.net/2381/34044-
dc.description.abstractThis thesis describes some chemistry of [(mes)RuC12]2, [(Cp)RuCl(CO)2] and [(Cp*)RhCl2]2 complexes and in particular, the reactions with biologically relevant ligands. Chapter one introduces the general chemistry of arene-ruthenium and pentamethylcyclopentadienyl-rhodium from early work described by Winkhaus and Singer in the preparation of half-sandwich arene-rathenium complex [(C6H6)RuCl2(PPh3)] and the contributions on the reactions of [(Cp*)RhCl2]2 reported by Maitlis and co-workers. The second half of the introduction discusses the introduction and uses of inorganic complexes as anti-tumour agents. Chapter two describes the reactions of amino acids with potentially coordinating side chains with [(mes)RuCl2]2 and the characterisation of the amino acidate complexes formed. The crystal structure of the complex [(mes)RuCl(phgly)] has been determined and a high temperature 1H n.m.r. spectrum has been obtained. Chapter three describes the preparation and characterisation of a number of pyranato and pyridinato complexes of arene-ruthenium and Cp*-rhodium. A low temperature 1H n.m.r. spectrum was obtained for the complex [(Cp*)RhCl(etmalt)] and conductivity experiments were obtained which indicate that the complexes exist in water as a mixture of water or chloride co-ordinated species. Chapter four describes the reactions of a number of half-sandwich complexes of ruthenium and rhodium with nucleobases to determine the binding site(s) involved in co-ordination. A set of competition reactions were undertaken to determine any preference of the complex [(mes)RuCl(phgly)] for the various nucleobases. We have found that for this ruthenium complex, guanosine forms the most stable complexes with thymidine and uridine forming the least stable.en
dc.language.isoenen
dc.rightsCopyright © the author. All rights reserved.en
dc.sourceProQuesten
dc.titleHalf-sandwich organoruthenium and organorhodium complexes of biologically relevant ligands.en
dc.typeThesisen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePh.D.en
dc.date.award1995en
dc.publisher.departmentChemistryen
dc.publisher.institutionUniversity of Leicesteren
dc.identifier.proquestU075053en
dc.identifier.cataloguecontrolx753316853en
Appears in Collections:Theses, Dept. of Chemistry
Leicester Theses

Files in This Item:
File Description SizeFormat 
U075053.pdf10.55 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.