Please use this identifier to cite or link to this item:
Title: Spectral and time-frequency analysis of ultrasonic Doppler signals.
Authors: Fan, Lingke.
First Published: 1994
Award date: 1994
Abstract: Spectral analysis of Doppler signals plays a very important role in non-invasive measurements of blood velocity distributions. Among the various spectral analysis methods available, the fast Fourier transform (FFT) is regarded as a "traditional" spectral analysis tool and is widely used in commercial, clinical, experimental and research equipment. Some drawbacks of this method, however, have imposed limitations on its use in some clinical cases. A numbers of spectral and time-frequency analysis methods have been studied in this dissertation. These include the traditional FFT, the autoregressive (AR) method, the Wigner-Ville distribution (WVD), and the Choi-Williams distribution (CWD). The advantages and disadvantages of each method have been studied and summarised. Efforts have been made to improve the temporal and frequency resolution of the results. New analysis methods such as the WVD and CWD have been interpreted physically, and some of their new properties have been explored. The results have suggested that the heights of the peaks in the AR spectra of narrow-band signals are not necessarily proportional to signal power, and should be used with caution in the context of Doppler signal processing. The results have also shown that it is appropriate to use the WVD or CWD to analyse signals when high temporal resolution is required. In practice, it is easier for the operator to handle the WVD, which usually produces reasonably good results. The above methods have been applied in practice. Considerable software and hardware development has been carried out, and a number of analysers have been implemented for use under different practical conditions. These analysers were also used to compare experimentally the analysis methods mentioned above, and to confirm the results of theoretical analyses. Some of these analysers have found applications in clinical practice.
Type: Thesis
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Theses, College of Medicine, Biological Sciences and Psychology
Leicester Theses

Files in This Item:
File Description SizeFormat 
U070773.pdf66.89 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.