Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/34825
Title: Automated synthesis of lumped linear three-terminal networks.
Authors: Savage, W. H.
Award date: 1979
Presented at: University of Leicester
Abstract: The classical techniques of network synthesis are restricted to designs in idealized elements with series-parallel configurations. This research is an investigation into the possibility of unrestricted synthesis employing alternative techniques which involve optimization by computer. In this method the values of the elements are modified such that an error function is reduced. If the current network is unable to satisfy the required network response then the components have to be modified. A method of coefficient matching was investigated with lumped, linear, passive three-terminal networks having a maximum of ten nodes. The research utilized a design package developed by Drs. O.P.D. Cutteridge and A.J. Krzeczkowski. This formulated the problem for solution by an RC network with a fixed number of nodes. An effective analysis routine calculated the values of the coefficients and their first derivatives, for optimization by the conjugate gradient and Gauss-Newton algorithms. The rudiments of a method for the addition and removal of a single element had been developed. Research was undertaken into three areas. Firstly, the efficiency and dependability of the optimization was improved. This involved research into the individual error functions, variation of common factors and the efficient utilization of the optimization algorithms. Secondly, modifications to the network topology were considered. The criteria to determine the need for a modification were improved and checks to ensure the continued efficiency implemented. An improved method of element addition (capable of multiple additions) was devised. Thirdly, the addition of groups of elements was investigated (i.e. node addition) and a successful method developed. With these modifications implemented, the package was able to achieve more complex realizations than had previously been obtained. For example some seven node RC realizations with fifteen elements were automatically evolved from initial structures having five nodes and eight elements, a process which sometimes required a total of twenty-five topological modifications. Several theoretically interesting networks which were evolved automatically by the package are included.
Links: http://hdl.handle.net/2381/34825
Level: Doctoral
Qualification: Ph.D.
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Leicester Theses
Theses, Dept. of Engineering

Files in This Item:
File Description SizeFormat 
U447190.pdf80.44 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.