Please use this identifier to cite or link to this item:
Title: Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways
Authors: Allison, S. J.
Knight, J. R. P.
Granchi, C.
Rani, R.
Minutolo, F.
Milner, J .
Phillips, R. M.
First Published: 12-May-2014
Publisher: Nature Publishing Group
Citation: Oncogenesis (2014) 3, e102
Abstract: Most cancer cells use aerobic glycolysis to fuel their growth. The enzyme lactate dehydrogenase-A (LDH-A) is key to cancer’s glycolytic phenotype, catalysing the regeneration of nicotinamide adenine dinucleotide (NAD+) from reduced nicotinamide adenine dinucleotide (NADH) necessary to sustain glycolysis. As such, LDH-A is a promising target for anticancer therapy. Here we ask if the tumour suppressor p53, a major regulator of cellular metabolism, influences the response of cancer cells to LDH-A suppression. LDH-A knockdown by RNA interference (RNAi) induced cancer cell death in p53 wild-type, mutant and p53-null human cancer cell lines, indicating that endogenous LDH-A promotes cancer cell survival irrespective of cancer cell p53 status. Unexpectedly, however, we uncovered a novel role for p53 in the regulation of cancer cell NAD+ and its reduced form NADH. Thus, LDH-A silencing by RNAi, or its inhibition using a small-molecule inhibitor, resulted in a p53-dependent increase in the cancer cell ratio of NADH:NAD+. This effect was specific for p53+/+ cancer cells and correlated with (i) reduced activity of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and (ii) an increase in acetylated p53, a known target of SIRT1 deacetylation activity. In addition, activation of the redox-sensitive anticancer drug EO9 was enhanced selectively in p53+/+ cancer cells, attributable to increased activity of NAD(P)H-dependent oxidoreductase NQO1 (NAD(P)H quinone oxidoreductase 1). Suppressing LDH-A increased EO9-induced DNA damage in p53+/+ cancer cells, but importantly had no additive effect in non-cancer cells. Our results identify a unique strategy by which the NADH/NAD+ cellular redox status can be modulated in a cancer-specific, p53-dependent manner and we show that this can impact upon the activity of important NAD(H)-dependent enzymes. To summarise, this work indicates two distinct mechanisms by which suppressing LDH-A could potentially be used to kill cancer cells selectively, (i) through induction of apoptosis, irrespective of cancer cell p53 status and (ii) as a part of a combinatorial approach with redox-sensitive anticancer drugs via a novel p53/NAD(H)-dependent mechanism.
DOI Link: 10.1038/oncsis.2014.16
ISSN: 2157-9024
eISSN: 2157-9024
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Oncogenesis is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
Description: Supplementary Information accompanies this paper on the Oncogenesis website
Appears in Collections:Published Articles, MRC Toxicology Unit

Files in This Item:
File Description SizeFormat 
oncsis201416a.pdfPublisher version1.34 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.