Please use this identifier to cite or link to this item:
Title: The photochemical response to the variation of temperature in Saturn’s 2011-2012 stratospheric vortex
Authors: Cavalie, T.
Dobrijevic, M.
Fletcher, Leigh Nicholas
Loisin, J. C.
Hickson, K. M.
Hue, V.
Hartogh, P.
First Published: 30-Jul-2015
Publisher: EDP Sciences for European Southern Observatory (ESO)
Citation: Astronomy and Astrophysics, 2015, 580, A55 (9)
Abstract: Context. A hot vortex formed in the stratosphere of Saturn following the 2010−2011 Northern Storm. Huge temperature increases have been measured in the vortex around the millibar level. Enhancements in hydrocarbon abundances have been observed at the millibar level in 2011−2012 inside this vortex. Aims. We model the time-dependent photochemistry inside the vortex by accounting for the temperature variability over the period from January 2011 to March 2012 to assess whether photochemistry alone can explain the enhancements seen in the hydrocarbon abundances. Methods. We used a 1D time-dependent photochemical model of Saturn and adapted it to the perturbed conditions of the vortex after validating it in quiescent conditions. Results. Our model predicts non-variability for ethane (C2H6) and acetylene (C2H2) and an increase in ethylene (C2H4) by a factor of 3 in the mbar region. Heavier hydrocarbons show a stronger variability than the lighter ones. We are unable to reproduce the increase seen in C2H2 , and we significantly underestimate the increase seen in C2H4. Conclusions. Pure photochemistry does not explain the variability seen in the abundance of most hydrocarbons. This means that dynamics (eddy diffusion and/or advection) must have played a significant role in shaping the vertical profiles of the main hydrocarbons.
DOI Link: 10.1051/0004-6361/201425444
ISSN: 0365-0138
eISSN: 1286-4846
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © ESO, 2015. Reproduced with permission from Astronomy & Astrophysics, © ESO.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
2015cavalie_saturn.pdfPost-review (final submitted)224.77 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.