Please use this identifier to cite or link to this item:
Title: Closed-Loop Control of Variable Stiffness Actuated Robots via Nonlinear Model Predictive Control
Authors: Zhakatayev, A.
Rubagotti, Matteo
Varol, H. A.
First Published: 31-Mar-2015
Publisher: Institute of Electrical and Electronics Engineers (IEEE), United States
Citation: IEEE Access, 2015, 3, pp. 235-248
Abstract: Variable stiffness actuation has recently attracted great interest in robotics, especially in areas involving a high degree of human-robot interaction. After investigating various design approaches for variable stiffness actuated (VSA) robots, currently the focus is shifting to the control of these systems. Control of VSA robots is challenging due to the intrinsic nonlinearity of their dynamicsdynamics and the need to satisfy constraints on input and state variables. Contrary to the partially open-loop state-of-the-art approaches, in this paper, we present a close-loop control framework for VSA robots leveraging recent increases in computational resources and advances in optimization algorithms. In particular, we generate reference trajectories by means of open-loop optimal control, and track these trajectories via nonlinear model predictive control in a closed-loop manner. In order to show the advantages of our proposed scheme with respect to the previous (partially open-loop) ones, extensive simulation and real-world experiments were conducted using a two link planar manipulator for a ball throwing task. The results of these experiments indicate that the closed-loop scheme outperforms the partially open loop one due to its ability to compensate for model uncertainties and external disturbances, while satisfying the imposed constraints.
DOI Link: 10.1109/ACCESS.2015.2418157
ISSN: 2169-3536
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2015, IEEE. Deposited in accordance with the copyright agreement. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See for more information.
Appears in Collections:Published Articles, Dept. of Engineering

Files in This Item:
File Description SizeFormat 
J12_ACCESS2015.pdfPublished (publisher PDF)34.89 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.