Please use this identifier to cite or link to this item:
Title: Predictions and observations of HF radio propagation in the northerly ionosphere: The effect of the solar flares and a weak CME in early January 2014
Authors: Hallam, Jonathan
Stocker, A. J.
Warrington, E. Michael
Siddle, D. R.
Zaalov, N. Y.
Honary, F.
Rogers, N. C
Boteler, D. H.
Danskin, D. W.
First Published: 2014
Presented at: European Geosciences Union General Assembly, Vienna, 26 April-5 May 2014
Start Date: 26-Apr-2014
End Date: 14-May-2014
Publisher: Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU)
Citation: Geophysical Research Abstracts. Vol. 16 Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU), 2014. p. EGU2014-15087.
Abstract: We have previously reported on a significant new multi-national project to provide improved predictions and forecasts of HF radio propagation for commercial aircraft operating on trans-polar routes. In these regions, there are limited or no VHF air-traffic control facilities and geostationary satellites are below the horizon. Therefore HF radio remains important in maintaining communications with the aircraft at all times. Space weather disturbances can have a range of effects on the ionosphere and hence HF radio propagation - particularly in the polar cap. While severe space weather effects can lead to a total loss of communications (i.e. radio blackout), less intense events can still cause significant disruption. In this paper we will present the effect of a series of M and X class solar flares and a relatively weak CME on HF radio performance from 6 to 13 January 2014. This is an interesting interval from the point of view of HF radio propagation because while the solar effects on the ionosphere are significant, except for an interval of approximately 12 hours duration, they are not so intense as to produce a complete radio blackout on all paths. Observations of the signal-to-noise ratio, direction of arrival, and time of flight of HF radio signals on six paths (one entirely within the polar cap, three trans-auroral, and two sub-auroral) will be presented together with riometer measurements of the ionospheric absorption. Global maps of D-region absorption (D-region absorption prediction, DRAP) inferred from satellite measurements of the solar wind parameters will be compared with the HF and riometer observations. In addition, a ray-tracing model using a realistic background ionosphere and including localised features found in the ionospheric polar cap (e.g. polar patches and arcs) will be used to model the expected and observed HF radio propagation characteristics.
ISBN: 1607-7962
Version: Publisher Version
Type: Conference Paper
Rights: Copyright © Author(s) 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Conference Papers & Presentations, Dept. of Engineering

Files in This Item:
File Description SizeFormat 
Hallam_et_al._2014_EGU_abstract_EGU2014_15087.pdfPublished (publisher PDF)40.12 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.