Please use this identifier to cite or link to this item:
Title: Assimilative Real-time Models of HF Absorption at High Latitudes
Authors: Rogers, N. C.
Honary, F.
Hallam, J.
Stocker, A. J.
Warrington, E. Michael
Danskin, D. W.
Jones, B.
First Published: 12-May-2015
Presented at: Ionospheric Effects Symposium, May 12-14, 2015 Alexandria, VA, USA
Start Date: 12-May-2015
End Date: 14-May-2015
Publisher: Boston College Institute of Scientific Research
Citation: Keith M. Groves (ed.), Proceedings of the 14th International Ionospheric Effects Symposium 12-14 May 2015.
Abstract: Improved real-time HF communications frequency management is required for aircraft on trans-polar routes. Polar cap absorption (PCA) models have therefore been adapted to assimilate real-time measurements of zenithal cosmic radio noise absorption (~ 30 MHz) from a large network of online riometers in Canada and Finland. Two types of PCA model have been developed and improvements to model accuracy following optimisation are quantified. Real-time optimisation is performed by age-weighting riometer measurements in a non-linear regression. This reduces root-mean-square errors (RMSE) from 2-3 dB to less than 1 dB and mean errors to within ±0.2 dB over a wide latitude range. This paper extends previous work by further optimising the models’ dependences on solar-zenith angle to account for differences in the ionospheric response at sunrise and sunset (the Twilight Anomaly). Two models of the rigidity cutoff latitudes are compared and one is optimised in real time by regression to riometer measurements. Whilst measurements from the NASA POES satellites may provide a direct measurement of the rigidity cut-off, it is observed that proton flux measurements from POES often need correcting for relativistic electron contamination for several hours at the start of a PCA event. An optimised real-time absorption model will be integrated into HF ray-tracing propagation predictions relating to measurements of HF signal strengths on a network of HF transmitters and receivers in the high northern latitudes.
Version: Post-print
Type: Conference Paper
Rights: Copyright © The Authors, 2015.
Appears in Collections:Conference Papers & Presentations, Dept. of Engineering

Files in This Item:
File Description SizeFormat 
048-Rogers-Paper.pdfPost-review (final submitted)576.48 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.