Please use this identifier to cite or link to this item:
Title: The impact of sunlight on high-latitude equivalent currents
Authors: Milan, Stephen Eric
Laundal, K. M.
Gjerloev, J. W.
Østgaard, N.
Reistad, J. P.
Haaland, S.
Snekvik, K.
Tenfjord, P.
Ohtani, S.
Milan, S. E.
First Published: 27-Feb-2016
Publisher: American Geophysical Union
Citation: Journal of Geophysical Research: Space Physics, 2016 (Early View)
Abstract: Ground magnetic field measurements can be mathematically related to an overhead ionospheric equivalent current. In this study we look in detail at how the global equivalent current, calculated using more than 30 years of SuperMAG magnetometer data, changes with sunlight conditions. The calculations are done using spherical harmonic analysis in quasi-dipole coordinates, a technique which leads to improved accuracy compared to previous studies. Sorting the data according to the location of the sunlight terminator and orientation of the interplanetary magnetic field (IMF), we find that the equivalent current resembles ionospheric convection patterns on the sunlit side of the terminator but not on the dark side. On the dark side, with southward IMF, the current is strongly dominated by a dawn cell and the current across the polar cap has a strong dawnward component. The contrast between the sunlit and dark side increases with increasing values of the F10.7 index, showing that increasing solar EUV flux changes not only the magnitude but also the morphology of the equivalent current system. The results are consistent with a recent study showing that Birkeland currents indirectly determine the equivalent current in darkness and that Hall currents dominate in sunlight. This has implication for the interpretation of ground magnetic field measurements and suggests that the magnetic disturbances at conjugate points will be asymmetrical when the solar illumination is different.
DOI Link: 10.1002/2015JA022236
ISSN: 2169-9402
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs ( ) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
Laundal_et_al-2016-Journal_of_Geophysical_Research-_Space_Physics.pdfPublished (publisher PDF)4.17 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.