Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/37603
Title: Detection of three Gamma-Ray Burst host galaxies at Z∼6
Authors: McGuire, J. T. W.
Tanvir, N. R.
Levan, A. J.
Trenti, M.
Stanway, E. R.
Shull, J. M.
Wiersema, K.
Perley, D. A.
Starling, R. L. C.
Bremer, M.
Stocke, J. T.
Hjorth, J.
Rhoads, J. E.
Levesque, E. M.
Robertson, B.
Fynbo, J. P. U.
Ellis, R. S.
Fruchter, A. S.
Perna, R.
First Published: 12-Jul-2016
Publisher: American Astronomical Society
Citation: Astrophysical Journal, 2016, 825 (2).
Abstract: Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, ${\lambda }_{{\rm{obs}}}\sim 1.4\;\mu {\rm{m}}$) filter. The hosts have magnitudes (corrected for Galactic extinction) of ${m}_{{\lambda }_{\mathrm{obs}},\mathrm{AB}}={26.34}_{-0.16}^{+0.14},{27.56}_{-0.22}^{+0.18},$ and ${28.30}_{-0.33}^{+0.25}$, respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is $\lesssim 2 \% $, indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift ($z\gt 5$) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1–0.6 ${L}_{z=6}^{* }$ (with ${M}_{1600}^{* }=-20.95\pm 0.12$) and half-light radii in the range 0.6–0.9 ${\rm{kpc}}$. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at $z\sim 6$. Spectroscopic analysis of the GRB afterglows indicate low metallicities ($[{\rm{M/H}}]\lesssim -1$) and low dust extinction (${A}_{{\rm{V}}}\lesssim 0.1$) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy's luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.
DOI Link: 10.3847/0004-637x/825/2/135
ISSN: 0004-637X
eISSN: 1538-4357
Links: http://iopscience.iop.org/article/10.3847/0004-637X/825/2/135/meta
http://hdl.handle.net/2381/37603
Version: Publisher Version
Type: Journal Article
Rights: Copyright © 2016. The American Astronomical Society. All rights reserved. Deposited with reference to the publisher’s open access archiving policy.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
apj_825_2_135.pdfPublished (publisher PDF)1.86 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.