Please use this identifier to cite or link to this item:
Title: A dispersive wave pattern on Jupiter's fastest retrograde jet at 20S
Authors: Rogers, J. H.
Fletcher, Leigh N.
Adamoli, G.
Jacquesson, M.
Vedovato, M.
Orton, G. S.
First Published: 27-May-2016
Publisher: Elsevier for Academic Press
Citation: Icarus, 2016, 277, pp. 354–369
Abstract: A compact wave pattern has been identified on Jupiter’s fastest retrograding jet at 20°S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity (‘rifts’). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (−−43.2 to −−21.2 m/s) and the longitudinal wavelength, which varied from 4.4 to 10.0° longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (−−62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near °N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. 2D windspeeds and thermal gradients measured by Cassini in 2000 are used to estimate the quasi-geostrophic potential vorticity gradient as a means of understanding the origin of the a wave. We find that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400–700 mbar) associated with the SEBs. Such a sign reversal is a necessary (but not sufficient) condition for the growth of baroclinic instabilities, which is a potential source of the meandering wave pattern.
DOI Link: 10.1016/j.icarus.2016.05.028
ISSN: 0019-1035
Embargo on file until: 27-May-2017
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © Elsevier, 2016. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License ( ), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
2016rogers_SEBswave.pdfPost-review (final submitted)3.12 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.