Please use this identifier to cite or link to this item:
Title: What effect does VOC sampling time have on derived OH reactivity?
Authors: Sonderfeld, Hannah
White, Iain R.
Goodall, Iain C. A.
Hopkins, James R.
Lewis, Alastair C.
Koppmann, Ralf
Monks, Paul S.
First Published: 24-May-2016
Publisher: European Geosciences Union (EGU)
Citation: Atmospheric Chemistry and Physics, 2016, 16 (10), pp. 6303-6318
Abstract: State-of-the-art techniques allow for rapid measurements of total OH reactivity. Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed “missing” OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. Volatile organic compounds (VOCs) acting as sinks of OH are often measured by gas chromatography (GC) methods which provide low-frequency measurements on a timescale of hours, while sampling times are generally only a few minutes. Here, the effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated. Measurements of VOC mixing ratios by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) conducted during two field campaigns (ClearfLo and PARADE) in an urban and a semi-rural environment were used to calculate OH reactivity. VOCs were selected to represent variability for different compound classes. Data were averaged over different time intervals to simulate lower time resolutions and were then compared to the mean hourly OH reactivity. The results show deviations in the range of 1 to 25 %. The observed impact of VOC variability is found to be greater for the semi-rural site. The selected compounds were scaled by the contribution of their compound class to the total OH reactivity from VOCs based on concurrent gas chromatography measurements conducted during the ClearfLo campaign. Prior to being scaled, the variable signal of aromatic compounds results in larger deviations in OH reactivity for short sampling intervals compared to oxygenated VOCs (OVOCs). However, once scaled with their lower share during the ClearfLo campaign, this effect was reduced. No seasonal effect on the OH reactivity distribution across different VOCs was observed at the urban site.
DOI Link: 10.5194/acp-16-6303-2016
ISSN: 1680-7316
eISSN: 1680-7324
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2016. This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Infection, Immunity and Inflammation

Files in This Item:
File Description SizeFormat 
16_ACPSonOHReact.pdfPublished (publisher PDF)1.16 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.