Please use this identifier to cite or link to this item:
Title: Effect of physical traffic & t-junction layout on radio signal characteristics & network performance at 5.9 ghz
Authors: Clayton, Crishantha Jerome
Supervisors: Stocker, Alan
Warrington, Michael
Award date: 1-Sep-2016
Presented at: University of Leicester
Abstract: IEEE 802.11p, which operates at 5.9 GHz, has been the widely adopted communications standard for vehicular communications and this has prompted studies at different physical locations on the network performance, pathloss, Doppler and delay spreads in the 5.9 GHz radio channel. This thesis presents novel measurements of network performance, signal strength and Doppler spread under NLOS conditions at three T-junctions with different street widths and building layouts. The study found that there was less received power and poorer network performance in intersections with single/dual lanes and fewer buildings on either side of the roads – the maximum range for reliable operation (>90%) of the network is reduced to approximately 10 m from the intersection centre. Higher signal strength in the presence of buildings is consistent with multipath propagation contributing positively towards the signal strength as shown by a site specific ray tracing model developed as part of this project. Signal strength measurements were compared with predictions from the model virtualsource11p and a median error less than 5 dB was found for measurements in urban environments and closer to the intersection centre. The median error was greater than 10 dB and increased with the distance from the intersection centre in junctions with wider roads and fewer buildings either side of the road. The relationship between a vehicle’s size and the Doppler spread it causes is another unique observation of this study and has been investigated by developing a simple model. Doppler spreads become larger as the reflecting vehicle moves closer to the transmitter and receiver and when the size of this vehicle is larger. A directional antenna was used to determine the azimuth of arrival of the strongest multipath components with the observations demonstrating the importance of including transient features in maps when ray tracing.
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Theses, Dept. of Engineering
Leicester Theses

Files in This Item:
File Description SizeFormat 
2016_CLAYTON_CJ_PhD.pdf11.97 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.