Please use this identifier to cite or link to this item:
Title: Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure
Authors: Hornbach, Matthew J.
Manga, Michael
Genecov, Michael
Valdez, Robert
Miller, Peter
Saffer, Demian
Adelstein, Esther
Lafuerza, Sara
Adachi, Tatsuya
Breitkreuz, Christoph
Jutzeler, Martin
Le Friant, Anne
Ishizuka, Osamu
Morgan, Sally
Slagle, Angela
Tailing, Peter J.
Fraass, Andrew
Watt, Sebastian F. L.
Stroncik, Nicole A.
Aljandali, Mohammed
Boudon, Georges
Fujinawa, Akihiko
Hatfield, Robert
Kataoka, Kyoko
Maeno, Fukashi
Martinez-Colon, Michael
McCanta, Molly
Palmer, Martin
Stinton, Adam
Subramanyam, K. S. V.
Tamura, Yoshihiko
Villemant, Benoît
Wall-Palmer, Deborah
Wang, Fei
First Published: 11-Nov-2015
Publisher: American Geophysical Union (AGU)
Citation: Journal of Geophysical Research: Solid Earth, 2015, 120 (12), pp. 7986-8011
Abstract: Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10⁻¹⁶–10⁻¹⁷ m²) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.
DOI Link: 10.1002/2015JB012061
ISSN: 2169-9313
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2015. This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Geology

Files in This Item:
File Description SizeFormat 
Hornbach_et_al-2015-Journal_of_Geophysical_Research-_Solid_Earth.pdfPublished (publisher PDF)8.49 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.