Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/38537
Title: Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations
Authors: Harrison, Jeremy J.
Chipperfield, M. P.
Boone, C. D.
Dhomse, S. S.
Bernath, P. F.
Froidevaux, L.
Anderson, J.
Russell, J.
First Published: 22-Aug-2016
Publisher: European Geosciences Union (EGU), Copernicus Publications
Citation: Atmospheric Chemistry and Physics, 2016, 16 (16), pp. 10501-10519
Abstract: The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of hydrogen fluoride (HF), the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier transform spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ~10% relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97±0.12%year-1 (1991-1997; HALOE), 1.12±0.08%year-1 (1998-2005; HALOE), and 0.52±0.03%year-1 (2004-2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48%year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude; for example, between 2004 and 2012 HF actually decreased in the Southern Hemisphere below 35km. An additional SLIMCAT simulation with repeating meteorology for the year 2000 produces much cleaner trends in HF with minimal variations with latitude and altitude. Therefore, the variations with latitude and altitude in the observed HF trends are due to variability in stratospheric dynamics on the timescale of a few years. Overall, the agreement between observation and model points towards the ongoing success of the Montreal Protocol and the usefulness of HF as a metric for stratospheric fluorine.
DOI Link: 10.5194/acp-16-10501-2016
ISSN: 1680-7316
eISSN: 1680-7324
Links: http://www.atmos-chem-phys.net/16/10501/2016/
http://hdl.handle.net/2381/38537
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.
Description: ACE-FTS data were obtained from https://databace.scisat.ca/ level2/ace_v3.0/ and https://databace.scisat.ca/level2/ace_ v3.5/. HALOE data were obtained from http://haloe.gats-inc. com/home/index.php. The GOZCARDS data used in this work have not been officially released, but will become available via the GOZCARDS website (https://gozcards.jpl.nasa. gov/index.php) at a later date.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
acp-16-10501-2016.pdfPublished (publisher PDF)7.4 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.