Please use this identifier to cite or link to this item:
Authors: Drake1, J. J.
Delgado2, L.
Laming3, J. M.
Starrfield4, S.
Kashyap1, V.
Orlando5, S.
Page6, Kim L.
Hernanz2, M.
Ness7, J-U.
Gehrz8, R. D.
First Published: 6-Jul-2016
Publisher: American Astronomical Society, IOP Publishing
Citation: The Astrophysical Journal, 825:95 (15pp), 2016 July 10
Abstract: The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s−1, an FWHM of 1200 ± 30 km s−1, and an average net blueshift of 165 ± 10 km s−1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10−7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.
DOI Link: 10.3847/0004-637X/825/2/95
ISSN: 1538-4357
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Creative Commons “Attribution Non-Commercial No Derivatives” licence CC BY-NC-ND, further details of which can be found via the following link: Archived with reference to SHERPA/RoMEO and publisher website.
Appears in Collections:Published Articles, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
Drake_2016_ApJ_825_95.pdfPublished (publisher PDF)1.77 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.