Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/38828
Title: Étale homotopy types of moduli stacks of polarised abelian schemes
Authors: Frediani, P.
Neumann, Frank
First Published: 25-Nov-2016
Publisher: Springer Berlin Heidelberg, Tbilisi Centre for Mathematical Sciences, Georgia
Citation: Journal of Homotopy and Related Structures, 2016, 11, pp. 775-801
Abstract: We determine the Artin–Mazur étale homotopy types of moduli stacks of polarised abelian schemes using transcendental methods and derive some arithmetic properties of the étale fundamental groups of these moduli stacks. Finally we analyse the Torelli morphism between the moduli stacks of algebraic curves and principally polarised abelian schemes from an étale homotopy point of view.
DOI Link: 10.1007/s40062-016-0149-8
ISSN: 2193-8407
eISSN: 1512-2891
Links: http://link.springer.com/article/10.1007%2Fs40062-016-0149-8
http://hdl.handle.net/2381/38828
Version: Post-print
Status: Peer-reviewed
Type: Journal Article
Rights: Creative Commons Attribution-NonCommercial 4.0 International License Archived with reference to publisher website.
Description: Mathematics Subject Classification 14F35 14K10 14H10 14C34
Appears in Collections:Published Articles, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
fnmasFinal.pdfPost-review (final submitted author manuscript)387.17 kBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.