Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/39183
Title: Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.
Authors: Hargreaves, Katherine R.
Thanki, Anisha M.
Jose, Bethany R.
Oggioni, Marco R.
Clokie, Martha R. J.
First Published: 13-Dec-2016
Publisher: BioMed Central
Citation: BMC Genomics, 2016 17:1020
Abstract: BACKGROUND: How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome). RESULTS: Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for (m4)C methylation, but has one additional spacer  when compared to the clinical isolate M120. CONCLUSIONS: These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.
DOI Link: 10.1186/s12864-016-3346-2
eISSN: 1471-2164
Links: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3346-2
http://hdl.handle.net/2381/39183
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Description: The two SMRT generated genomes of M120 and CD105HS27 have been deposited in the ENA in study PRJEB13565 and have accession numbers ERS1242840 and ERS1242839, respectively. The methylation data has been deposited for each isolate in REBASE as organisms #19242 and #19243, respectively.
Appears in Collections:Published Articles, Dept. of Infection, Immunity and Inflammation

Files in This Item:
File Description SizeFormat 
12864_2016_Article_3346.pdfPublished (publisher PDF)1.42 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.