Please use this identifier to cite or link to this item:
Title: Novel X-ray Diffraction and the Remote Analysis of Mars
Authors: Turner, Stuart Matthew Robert
Supervisors: Bridges, John C.
Hansford, Graeme
Award date: 9-Mar-2017
Presented at: University of Leicester
Abstract: The scientific exploration of Mars is currently being undertaken with the goals: to determine if Mars ever supported life; to understand the past and present climate; and to understand the evolution of its surface and interior. To achieve these goals, orbital and in-situ exploration of Mars is required. Detailed orbital high-resolution hyperspectral, image and topographic datasets enable the identification of areas of scientific interest on the surface of Mars. In-situ measurements are then taken by planetary landers and rovers to characterise the environment in great detail. This thesis has used orbital datasets to investigate impact craters on Mars, and has also focused on the development of a novel X-ray diffraction instrument technique that could be used to characterise the surface of Mars in-situ. The study of post-Noachian impact craters with hyperspectral data returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), highlighted two impact craters that may have hosted an impact-induced hydrothermal system. One of these impact craters shows spectral evidence for the presence of the mineral prehnite (Ca2Al2Si3O10(OH)2) that likely formed as a result of impact-induced hydrothermal activity, and might have provided a habitable environment for microbial life. A novel back-reflection X-ray diffraction technique that is uniquely insensitive to sample morphology, facilitating the analysis of unprepared whole-rock samples, was successfully tested on a range of samples from rock-forming minerals to carbonates, sulphates and phyllosilicates. A range of experimental facilities were utilised in this work, including a beamline at the Diamond Light Source synchrotron facility where the technique was further validated in a high-resolution configuration. The work presented in this thesis exemplifies the identification of an area of scientific interest on Mars, and the extensive testing and development of an instrument technique that could be used to geologically characterise such an identified area in-situ.
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Leicester Theses
Theses, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
2017TURNERSMRPhD.pdfThesis19.22 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.