Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/39718
Title: Development of Experimental and Finite Element Modelling Techniques for Investigation of Human Femurs
Authors: Meakin, Caroline Elizabeth
Supervisors: Maksym, Piotr
Gill, Simon
Conroy, Simon
Award date: 26-Apr-2017
Presented at: University of Leicester
Abstract: The aim of the work presented in this thesis was to develop a finite element model and experiment to simulate the loading conditions caused by a fall on the proximal femur. Investigations were carried out with a PVC surrogate human femur and a sheep's femur. The results of the model and experiment were used to assess the effect of the orientation of the femur at time of impact on the strain distribution. The finite element model was based on data obtained from computed tomography scans of the samples, which were used to characterise their geometry and material properties, and included a simulation of the contact mechanics in the hip joint. The experiment involved the use of strain gauges to measure strain at a number of locations on the samples. Apparatus was developed to support the samples at a range of orientations with respect to the direction of an applied load. Trilateration was used to identify the model coordinates of the strain gauges. The accuracy of the model, assessed by comparison with the results of the experiment, was found to be limited by restrictions in the resolution of the CT data. An investigation into the effect of multiple freeze-thaw cycles on strain gauge measurements showed that the accuracy of strain readings taken after four cycles could not be guaranteed. The use of different materials to simulate the acetabular surface through which the load is applied to the femoral head was determined to have a significant effect on the strain, as was the difference between using a foam soft tissue surrogate and a hard PMMA cap to protect the greater trochanter. The effect of changing the angle of rotation about the shaft of the femur was assessed. It was found that the largest strains per unit force were associated with posterolateral falls.
Links: http://hdl.handle.net/2381/39718
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Leicester Theses
Theses, Dept. of Physics and Astronomy

Files in This Item:
File Description SizeFormat 
2017MEAKINCPhD.pdfThesis61.42 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.