Please use this identifier to cite or link to this item:
Title: Using offender crime scene behavior to link stranger sexual assaults: A comparison of three statistical approaches
Authors: Tonkin, Matthew J.
Pakkanen, T.
Siren, J.
Bennell, C.
Woodhams, J.
Burrell, A.
Imre, H.
Winter, J. M.
Lam, E.
ten Brinke, G.
Webb, M.
Labuschagne, G.
Ashmore-Hills, L.
van der Kemp, J. J.
Lipponnen, S.
Rainbow, L.
Salfati, C. G.
Santtila, P.
First Published: 18-Apr-2017
Publisher: Elsevier
Citation: Journal of Criminal Justice, 2017, 50, pp. 19-28
Abstract: Purpose: This study compared the utility of different statistical methods in differentiating sexual crimes committed by the same person from sexual crimes committed by different persons. Methods: Logistic regression, iterative classification tree (ICT), and Bayesian analysis were applied to a dataset of 3,364 solved, unsolved, serial, and apparent one-off sexual assaults committed in five countries. Receiver Operating Characteristic analysis was used to compare the statistical approaches. Results: All approaches achieved statistically significant levels of discrimination accuracy. Two out of three Bayesian methods achieved a statistically higher level of accuracy (Areas Under the Curve [AUC] = 0.89 [Bayesian coding method 1]; AUC = 0.91 [Bayesian coding method 3]) than ICT analysis (AUC = 0.88), logistic regression (AUC = 0.87), and Bayesian coding method 2 (AUC = 0.86). Conclusions: The ability to capture/utilize between-offender differences in behavioral consistency appear to be of benefit when linking sexual offenses. Statistical approaches that utilize individual offender behaviors when generating crime linkage predictions may be preferable to approaches that rely on a single summary score of behavioral similarity. Crime linkage decision-support tools should incorporate a range of statistical methods and future research must compare these methods in terms of accuracy, usability, and suitability for practice.
DOI Link: 10.1016/j.jcrimjus.2017.04.002
ISSN: 0047-2352
Version: Post-print
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2017, Elsevier. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.
Description: The file associated with this record is embargoed until 24 months after the date of publication. The final published version may be available through the links above.
Appears in Collections:Published Articles, Dept. of Criminology

Files in This Item:
File Description SizeFormat 
Tonkin et al. (2017).pdfPost-review (final submitted author manuscript)189.17 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.