Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/39885
Title: Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex
Authors: Okun, Michael
Lak, Armin
Carandini, Matteo
Harris, Kenneth D.
First Published: 9-Mar-2016
Publisher: Public Library of Science
Citation: PLoS One, 2016, 11 (3): e0151180
Abstract: A key experimental approach in neuroscience involves measuring neuronal activity in behaving animals with extracellular chronic recordings. Such chronic recordings were initially made with single electrodes and tetrodes, and are now increasingly performed with high-density, high-count silicon probes. A common way to achieve long-term chronic recording is to attach the probes to microdrives that progressively advance them into the brain. Here we report, however, that such microdrives are not strictly necessary. Indeed, we obtained high-quality recordings in both head-fixed and freely moving mice for several months following the implantation of immobile chronic probes. Probes implanted into the primary visual cortex yielded well-isolated single units whose spike waveform and orientation tuning were highly reproducible over time. Although electrode drift was not completely absent, stable waveforms occurred in at least 70% of the neurons tested across consecutive days. Thus, immobile silicon probes represent a straightforward and reliable technique to obtain stable, long-term population recordings in mice, and to follow the activity of populations of well-isolated neurons over multiple days.
DOI Link: 10.1371/journal.pone.0151180
eISSN: 1932-6203
Links: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151180
http://hdl.handle.net/2381/39885
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2016. This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Neuroscience, Psychology and Behaviour

Files in This Item:
File Description SizeFormat 
journal.pone.0151180.PDFPublished (publisher PDF)2.12 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.