Please use this identifier to cite or link to this item:
Title: In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.
Authors: Cowen, Todd
Busato, Mirko
Karim, Kal
Piletsky, Sergey A.
First Published: 11-Nov-2016
Publisher: Wiley-VCH Verlag
Citation: Macromolecular Rapid Communications, 2016, 37 (24), pp. 2011-2016
Abstract: Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally.
DOI Link: 10.1002/marc.201600515
ISSN: 1022-1336
eISSN: 1521-3927
Embargo on file until: 1-Jan-10000
Version: Post-print
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © 2016, Wiley-VCH Verlag. Deposited with reference to the publisher’s open access archiving policy.
Description: The file associated with this record is under a permanent embargo in accordance with the publisher's policy. The full text may be available through the publisher links provided above.
Appears in Collections:Published Articles, Dept. of Chemistry

Files in This Item:
File Description SizeFormat 
LRA_ in silico synthesis of synthetic receptors.docxPost-review (final submitted author manuscript)914.94 kBUnknownView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.