Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/41975
Title: Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
Authors: Paige, E.
Barrett, J.
Pennells, L.
Sweeting, Michael
Willeit, P.
Di Angelantonio, E.
Gudnason, V.
Nordestgaard, B. G.
Psaty, B. M.
Goldbourt, U.
Best, L. G.
Assmann, G.
Salonen, J. T.
Nietert, P. J.
Verschuren, W. M. M.
Brunner, E. J.
Kronmal, R. A.
Salomaa, V.
Bakker, S. J. L.
Dagenais, G. R.
Sato, S.
Jansson, J.-H.
Willeit, J.
Onat, A.
de la Cámara, A. G.
Roussel, R.
Völzke, H.
Dankner, R.
Tipping, R. W.
Meade, T. W.
Donfrancesco, C.
Kuller, L. H.
Peters, A.
Gallacher, J.
Kromhout, D.
Iso, H.
Knuiman, M.
Casiglia, E.
Kavousi, M.
Palmieri, L.
Sundström, J.
Davis, B. R.
Njølstad, I.
Couper, D.
Danesh, J.
Thompson, S. G.
Wood, A.
First Published: 13-Jun-2017
Publisher: Oxford University Press for Johns Hopkins University, Bloomberg School of Public Health
Citation: American Journal of Epidemiology, 2017, 186 (8), pp. 899-907
Abstract: The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
DOI Link: 10.1093/aje/kwx149
ISSN: 0002-9262
eISSN: 1476-6256
Links: https://academic.oup.com/aje/article/186/8/899/3855098
http://hdl.handle.net/2381/41975
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2017. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Health Sciences



Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.