Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/42025
Title: Investigation of the function of Campylobacter jejuni glyceraldehyde-3-phosphate dehydrogenase in iron acquisition from lactoferrin
Authors: Fadel, Mohamed-Elamen Mohamed Mahmoud
Supervisors: Morrissey, Julie
Ketley, Julian
Award date: 13-Mar-2018
Presented at: University of Leicester
Abstract: Campylobacter jejuni is a major cause of bacterial food-borne disease, but the available knowledge of the biology and molecular basis of its pathogenesis is limited. Iron is an essential co-factor for the effective intestinal colonisation of C. jejuni. However, iron is not readily available due to its being tightly bound to proteins such as haemoglobin, transferrin and lactoferrin (Lf). Studies in different organisms have reported the contribution of GAPDH to iron acquisition from ferric-Tf and ferric-Lf; iron binding proteins. Therefore, this study aimed to determine the role of C.jejuni NCTC11168 GAPDH in iron uptake from host ferric-lactoferrin complex. Due to essentiality of gapA, use of the Campylobacter complementation pC46 plasmids to inactivate this gene was required. Therefore, gapA mutated strains were successfully created in which the wild type gapA allele was knocked out in a gapA merodiploid strains while the expression of the complemented gapA allele is driven by promoters of different strength. In addition, site-directed mutagenesis was used to create C150S-GAPDH protein which lacks glycolytic activity. The results of gene expression studies in this research show that the mutated gapA strains overexpressed GAPDH. Iron growth assays in MEMα medium supplemented with low concentrations of human ferric-Lf as the sole iron source indicated that GAPDH has an important role in iron uptake from Lf. This role was supported by the inhibition of the growth of C. jejuni incubated with anti-GapA antibody in cultures supplemented with ferric-Lf as the sole iron source. Moreover, GAPDH was identified for the first time as an outer membrane associated protein in C. jejuni. Using different binding assays, it was shown that GAPDH could act as an extracellular receptor for Lf. Both purified wild type GAPDH and non-glycolytic functional C150S-cjGAPDH bound different ferric-Lf family iron binding proteins, with high affinity binding of Lf compared to the other iron glycoproteins. Therefore, the binding function of GAPDH is independent from glycolytic function. In conclusion, this research demonstrates that GAPDH of C. jejuni is important agent in iron uptake from human ferric-Lf, and therefore it is probably required for successful colonisation of C. jejuni.
Links: http://hdl.handle.net/2381/42025
Embargo on file until: 13-Mar-2020
Type: Thesis
Level: Doctoral
Qualification: PhD
Rights: Copyright © the author. All rights reserved.
Appears in Collections:Leicester Theses
Theses, Dept. of Genetics

Files in This Item:
File Description SizeFormat 
2018FadelMEMMPhD.pdfThesis4.89 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.