Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/42588
Title: The five factor model of personality and evaluation of drug consumption risk
Authors: Fehrman, Elaine
Muhammad, Awaz K.
Mirkes, Evgeny M.
Egan, Vincent
Gorban, Alexander N.
First Published: 5-Jul-2017
Presented at: Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), Alma Mater Studiorum, University of Bologna
Start Date: 5-Jul-2015
End Date: 8-Jul-2015
Publisher: Springer International Publishing AG
Citation: Data Science. Studies in Classification, Data Analysis, and Knowledge Organization, 2017
Abstract: The problem of evaluating an individual’s risk of drug consumption and misuse is highly important and novel. An online survey methodology was employed to collect data including personality traits (NEO-FFI-R), impulsivity (BIS-11), sensation seeking (ImpSS), and demographic information. The data set contained information on the consumption of 18 central nervous system psychoactive drugs. Correlation analysis using a relative information gain model demonstrates the existence of a group of drugs (amphetamines, cannabis, cocaine, ecstasy, legal highs, LSD, and magic mushrooms) with strongly correlated consumption. An exhaustive search was performed to select the most effective subset of input features and data mining methods to classify users and non-users for each drug. A number of classification methods were employed (decision tree, random forest, k-nearest neighbours, linear discriminant analysis, Gaussian mixture, probability density function estimation, logistic regression, and naïve Bayes) and the most effective method selected for each drug. The quality of classification was surprisingly high. The best results with sensitivity and specificity being greater than 75% were achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance abuse. Sensitivity and specificity greater than 70% were achieved for amphetamines, amyl nitrite, benzodiazepines, chocolate, caffeine, heroin, ketamine, methadone, and nicotine. The poorest result was obtained for prediction of alcohol consumption.
Series/Report no.: Studies in Classification, Data Analysis, and Knowledge Organization;
DOI Link: 10.1007/978-3-319-55723-6_18
ISBN: 978-3-319-55722-9
Links: https://link.springer.com/chapter/10.1007%2F978-3-319-55723-6_18
http://hdl.handle.net/2381/42588
Embargo on file until: 1-Jan-10000
Version: Post-print
Status: Peer-reviewed
Type: Conference Paper
Rights: Copyright © 2017, Springer. Deposited with reference to the publisher’s open access archiving policy. (http://www.rioxx.net/licenses/all-rights-reserved)
Description: The file associated with this record is under embargo while permission to archive is sought from the publisher. The full text may be available through the publisher links provided above.
Appears in Collections:Conference Papers & Presentations, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
1506.06297v2.pdfPost-review (final submitted author manuscript)1.06 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.