Please use this identifier to cite or link to this item:
Title: Extending the range of error estimates for radial approximation in Euclidean space and on spheres
Authors: Brownlee, R.A.
Georgoulis, Emmanuil H.
Levesley, Jeremy
First Published: 2006
Publisher: Dept. of Mathematics, University of Leicester
Abstract: We adapt Schaback's error doubling trick [13] to give error estimates for radial interpolation of functions with smoothness lying (in some sense) between that of the usual native space and the subspace with double the smoothness. We do this for both bounded subsets of IRd and spheres. As a step on the way to our ultimate goal we also show convergence of pseudo-derivatives of the interpolation error.
Series/Report no.: MA 06-003
Type: Report
Appears in Collections:Reports, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
MA-06-003.pdf168.08 kBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.