Leicester Research Archive

Leicester Research Archive >
College of Medicine, Biological Sciences and Psychology >
Genetics, Department of >
Published Articles, Dept. of Genetics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/4318

Title: Complex germline and somatic mutation processes at a haploid human minisatellite shown by single-molecule analysis.
Authors: Shanks, Morag E.
May, Celia A.
Dubrova, Yuri E.
Balaresque, Patricia L.
Rosser, Zoë H.
Adams, Susan M.
Jobling, Mark A.
Issue Date: 15-Dec-2008
Publisher: Elsevier Science B.V., Amsterdam.
Citation: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 648 (1-2), pp. 46-53.
Abstract: Mutation at most human minisatellites is driven by complex interallelic processes that give rise to a high degree of length polymorphism and internal structural variation. MSY1, the only highly variable minisatellite on the non-recombining region of the Y chromosome, is constitutively haploid and therefore precluded from interallelic interactions, yet maintains high diversity in both length and structure. To investigate the basis of its mutation processes, an unbiased structural analysis of >500 single-molecule MSY1 PCR products from matched sperm and blood samples from a single donor was undertaken. The overall mutation frequencies in sperm and blood DNAs were not significantly different, at 2.68% and 1.88%, respectively. Sperm DNA showed significantly more length mutants than blood DNA, with mutants in both tissues involving small-scale (1–3 repeat units in a 77 repeat progenitor allele) increases or decreases in repeat block lengths, with no gain or loss bias. Isometric mutations altering structure but not length were found in both tissues, and involved either the apparent shift of a boundary between repeat unit blocks (a ‘boundary switch’) or the conversion of a repeat within a block to a different repeat type (‘modular structure’ mutant). There was a significant excess of boundary switch mutants and deficit of modular structure mutants in sperm. A comparison of mutant structures with phylogenetically matched alleles in population samples showed that alleles with structures resembling the blood mutants were unlikely to arise in populations. Mutation seems likely to involve gene conversion via synthesis-dependent strand annealing, and the blood-sperm differences may reflect more relaxed constraint on sister chromatid alignment in blood.
ISSN: 0165-1110
Links: http://dx.doi.org/10.1016/j.mrfmmm.2008.09.008
http://hdl.handle.net/2381/4318
Type: Article
Description: This is the author's final draft of the paper published as Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 648 (1-2), pp. 46-53. The final version is available from http://www.sciencedirect.com. Doi: 10.1016/j.mrfmmm.2008.09.008
Appears in Collections:Published Articles, Dept. of Genetics

Files in This Item:

File Description SizeFormat
Shanks08ForLRA.pdf1.17 MBAdobe PDFView/Open
View Statistics

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

MAINTAINER