Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/44158
Title: SL_2-Tilings Do Not Exist in Higher Dimensions (mostly)
Authors: Demonet, L
Plamondon, P-G
Rupel, D
Stella, S
Tumarkin, P
First Published: 2018
Publisher: The Séminaire Lotharingien de Combinatoire, Copyright Dominique Foata, Guoniu Han, Alain Sartout and Christian Krattenthaler
Citation: Séminaire Lotharingien de Combinatoire, 2018, 76, B76d.
Abstract: We define a family of generalizations of SL2-tilings to higher dimensions called epsilon-SL2-tilings. We show that, in each dimension 3 or greater, epsilon-SL2-tilings exist only for certain choices of epsilon. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.
ISSN: 1286-4889
Links: https://www.mat.univie.ac.at/~slc/wpapers/s76stella.html
http://hdl.handle.net/2381/44158
Version: Post-print
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © The Author(s), 2018. Deposited with reference to the publisher’s open access archiving policy. (http://www.rioxx.net/licenses/all-rights-reserved)
Appears in Collections:Published Articles, Dept. of Mathematics

Files in This Item:
File Description SizeFormat 
1604.02491v2.pdfPost-review (final submitted author manuscript)118.29 kBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.