Please use this identifier to cite or link to this item:
Title: Land Surface Temperature Retrieval from Sentinel-3A Sea and Land Surface Temperature Radiometer, Using a Split-Window Algorithm
Authors: Yitong, Z
Ren, H
Guo, J
Ghent, D
Tansey, K
Hu, X
Nie, J
Chen, S
First Published: 17-Mar-2019
Publisher: MDPI
Citation: Remote Sensing, 2019, 11 (6), pp. 650-650 (17)
Abstract: Land surface temperature (LST) is a crucial parameter in the interaction between the ground and the atmosphere. The Sentinel-3A Sea and Land Surface Temperature Radiometer (SLSTR) provides global daily coverage of day and night observation in the wavelength range of 0.55 to 12.0 μm. LST retrieved from SLSTR is expected to be widely used in different fields of earth surface monitoring. This study aimed to develop a split-window (SW) algorithm to estimate LST from two-channel thermal infrared (TIR) and one-channel middle infrared (MIR) images of SLSTR observation. On the basis of the conventional SW algorithm, using two TIR channels for the daytime observation, the MIR data, with a higher atmospheric transmittance and a lower sensitivity to land surface emissivity, were further used to develop a modified SW algorithm for the nighttime observation. To improve the retrieval accuracy, the algorithm coefficients were obtained in different subranges, according to the view zenith angle, column water vapor, and brightness temperature. The proposed algorithm can theoretically estimate LST with an error lower than 1 K on average. The algorithm was applied to northern China and southern UK, and the retrieved LST captured the surface features for both daytime and nighttime. Finally, ground validation was conducted over seven sites (four in the USA and three in China). Results showed that LST could be estimated with an error mostly within 1.5 to 2.5 K from the algorithm, and the error of the nighttime algorithm involved with MIR data was about 0.5 K lower than the daytime algorithm.
DOI Link: 10.3390/rs11060650
ISSN: 2072-4292
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Description: The Sentinel-3A images were downloaded from Sentinel-3 Pre-Operations Data Hub (, and the SURFRAD data were obtained from National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory: Global Monitoring Division (
Appears in Collections:Published Articles, Dept. of Geography

Files in This Item:
File Description SizeFormat 
remotesensing-11-00650.pdfPublished (publisher PDF)1.64 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.