Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/46095
Title: From marine bands to hybrid flows: Sedimentology of a Mississippian black shale
Authors: Emmings, Joseph F.
Davies, Sarah J.
Vane, Christopher H.
Moss-Hayes, Vicky
Stephenson, Michael H.
First Published: 24-Jun-2019
Publisher: Wiley, International Association of Sedimentologists
Citation: Sedimentology, 2019
Abstract: Organic‐rich mudstones have long been of interest as conventional and unconventional source rocks and are an important organic carbon sink. Yet the processes that deposited organic‐rich muds in epicontinental seaways are poorly understood, partly because few modern analogues exist. This study investigates the processes that transported and deposited sediment and organic matter through part of the Bowland Shale Formation, from the Mississippian Rheic–Tethys seaway. Field to micron‐scale sedimentological analysis reveals a heterogeneous succession of carbonate‐rich, siliceous, and siliciclastic, argillaceous muds. Deposition of these facies at basinal and slope locations was moderated by progradation of the nearby Pendle delta system, fourth‐order eustatic sea‐level fluctuation and localized block and basin tectonism. Marine transgressions deposited bioclastic ‘marine band’ (hemi)pelagic packages. These include abundant euhaline macrofaunal tests, and phosphatic concretions of organic matter and radiolarian tests interpreted as faecal pellets sourced from a productive water column. Lens‐rich (lenticular) mudstones, hybrid, debrite and turbidite beds successively overlie marine band packages and suggest reducing basin accommodation promoted sediment deposition via laminar and hybrid flows sourced from the basin margins. Mud lenses in lenticular mudstones lack organic linings and bioclasts and are equant in early‐cemented lenses and in plan‐view, and are largest and most abundant in mudstones overlying marine band packages. Thus, lenses likely represent partially consolidated mud clasts that were scoured and transported in bedload from the shelf or proximal slope, as a ‘shelf to basin’ conveyor, during periods of reduced basin accommodation. Candidate in situ microbial mats in strongly lenticular mudstones, and as rip‐up fragments in the down‐dip hybrid beds, suggest that these were potentially key biostabilizers of mud. Deltaic mud export was fast, despite the intrabasinal complexity, likely an order of magnitude higher than similar successions deposited in North America. Epicontinental basins remotely linked to delta systems were therefore capable of rapidly accumulating both sediment and organic matter.
DOI Link: 10.1111/sed.12642
ISSN: 0037-0746
eISSN: 1365-3091
Links: https://onlinelibrary.wiley.com/doi/full/10.1111/sed.12642
http://hdl.handle.net/2381/46095
Version: Publisher Version
Status: Peer-reviewed
Type: Journal Article
Rights: Copyright © the authors, 2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:Published Articles, Dept. of Geology

Files in This Item:
File Description SizeFormat 
sed.12642.pdfPublished (publisher PDF)14.81 MBAdobe PDFView/Open


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.