Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamad, A.-
dc.contributor.authorGarrett, S.J.-
dc.identifier.citationProceedings of FEDSM2009, ASME 2009 Fluids Engineering Summer Meeting, August 2-5, 2009, Vail, Colorado USA.en_GB
dc.descriptionThis paper was published in Proceedings of FEDSM2009, ASME 2009 Fluids Engineering Summer Meeting, August 2-5, 2009, Vail, Colorado USA. It is available from Doi: 10.1115/FEDSM2009-78484en_GB
dc.descriptionMetadata only entry-
dc.description.abstractThe continuous development of spinning projectiles and other industrial applications has led to the need to understand the laminar boundary-layer flow and subsequent onset of transition over the general family of rotating spheroids. We begin by finding the laminar boundary-layer flow over a general spheroid. In particular, we distinguish between prolate and oblate spheroids and use an appropriate spheroidal coordinate system in each case. The laminar-flow equations are established for each family of spheroid rotating in otherwise still fluid. An eccentricity parameter e is used to distinguish particular bodies within the oblate or prolate families. In each case, setting e = 0 reduces the equations to those already established by Howarth [2] and Banks [4] for the rotating sphere. In this preliminary study the laminar-flow equations at each latitude are solved by extending the original series solutions due to Howarth and Banks for the rotating sphere. The laminar flows obtained are consistent with established results for the rotating sphere as e tends to zero, and tend to the von Kármán [5] solution for the rotating disk as the latitude is reduced close to the nose. Analyses of the convective instability are performed on the rotating prolate family. These extend the linear analyses previously published by Malik, Lingwood and Garrett & Peake [6–10] on related geometries. An investigation into the relative importance of type I (crossflow) and type II (streamline curvature) modes is also presented. At low latitudes increasing eccentricity has negligible effects on the stability characteristics of the flow. However as the latitude increases, eccentricity is seen to lower the upper (type I) branch of the neutral curve, reducing the region of instability.en_GB
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_GB
dc.titleThe convective instability of boundary-layer flows over rotating spheroidsen_GB
dc.typeConference paperen_GB
Appears in Collections:Conference Papers & Presentations, Dept. of Mathematics

Files in This Item:
There are no files associated with this item.

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.