Please use this identifier to cite or link to this item: http://hdl.handle.net/2381/8873
Title: Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes
Authors: Durant, Stephen T.
Morris, Melanie M.
Illand, Maureen
McKay, Helen J.
McCormick, Carol
Hirst, Gillian L.
Borts, Rhona H.
Brown, Robert
First Published: 14-Jan-1999
Publisher: Elsevier
Citation: Current Biology, 1999, 9(1), pp.51-54.
Abstract: Mismatch repair (MMR) proteins repair mispaired DNA bases and have an important role in maintaining the integrity of the genome. Loss of MMR has been correlated with resistance to a variety of DNA-damaging agents, including many anticancer drugs. How loss of MMR leads to resistance is not understood, but is proposed to be due to loss of futile MMR activity and/or replication stalling. We report that inactivation of MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not PMS1) in isogenic strains of Saccharomyces cerevisiae led to increased resistance to the anticancer drugs cisplatin, carboplatin and doxorubicin, but had no effect on sensitivity to ultraviolet C (UVC) radiation. Sensitivity to cisplatin and doxorubicin was increased in mlh1 mutant strains when the MLH1 gene was reintroduced, demonstrating a direct involvement of MMR proteins in sensitivity to these DNA-damaging agents. Inactivation of MLH1, MLH2 or MSH2 had no significant effect, however, on drug sensitivities in the rad52 or rad1 mutant strains that are defective in mitotic recombination and removing unpaired DNA single strands. We propose a model whereby MMR proteins in addition to their role in DNA-damage recognition decrease adduct tolerance during DNA replication by modulating the levels of recombination-dependent bypass. This hypothesis is supported by the finding that, in human ovarian tumour cells, loss of hMLH1 correlated with acquisition of cisplatin resistance and increased cisplatin-induced sister chromatid exchange, both of which were reversed by restoration of hMLH1 expression.
ISSN: 0960-9822
Links: http://dx.doi.org/10.1016/S0960-9822(99)80047-5
http://hdl.handle.net/2381/8873
Type: Article
Description: The full text of this article is not currently available on the LRA. The original published version is available from the publisher's website at: http://www.cell.com/current-biology/abstract/S0960-9822(99)80047-5 doi:10.1016/S0960-9822(99)80047-5
Appears in Collections:Published Articles, Dept. of Genetics

Files in This Item:
There are no files associated with this item.


Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.