Please use this identifier to cite or link to this item:
Title: Simulation of carbon isotope discrimination of the terrestrial biosphere
Authors: Suits, Neil S.
Denning, A. Scott
Berry, J. A.
Still, C. J.
Kaduk, Jörg
Miller, J. B.
Baker, I.T.
First Published: 5-Mar-2005
Publisher: American Geophysical Union (AGU)
Citation: Global Biogeochemical Cycles, 2005, 19 (1), GB1017.
Abstract: We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983–1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations. Simulated zonal δ13C ratios in the Northern Hemisphere capture patterns of zonal δ13C inferred from atmospheric measurements better than previous investigations. Finally, there is still a need for additional constraints to verify that carbon isotope models behave as expected.
DOI Link: 10.1029/2003GB002141
ISSN: 0886-6236
Type: Article
Rights: This paper was published as Global Biogeochemical Cycles, 2005, 19 (1), GB1017. Copyright © 2005 American Geophysical Union. It is also available from the publisher's website at Doi: 10.1029/2003GB002141
Appears in Collections:Published Articles, Dept. of Geography

Files in This Item:
File Description SizeFormat 
Suitsetal2005GB002141.pdf1.12 MBAdobe PDFView/Open

Items in LRA are protected by copyright, with all rights reserved, unless otherwise indicated.